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Abstract

Asymptotic methods are used to descn'be the nonlinear seN-interaction between pairs
of obfique instability modes that eventually develops when initially linear and spatially

growing instability waves evolve downstream in nominally two-dimensional and
spanwise periodic laminar boundary layers. The first nonlinear reaction takes place
locally within a so-called 'critical layer' with the flow outside this layer consisting of a
locally parallel mean flow plus an appropriate superposition of linear instability waves.
The amplitudes of these waves are determined by either a single integro-differential
equation or by a pair of integro-differential equations with quadratic to quartic-type
nonlinearities.

1. Introduction

Transition to turbulence in boundary layers frequently begins with initially linear and

noninteracting instability waves that grow to nonlinear amplitudes as they propagate
downstream. This phenomenon is usually studied experimentally by artificially exciting
the flow with small-amplitude, nearly two-dimensional and single-frequency excitation
devices. Lack of two-dimensionality in the excitation device can produce streamwise
vortices, which can easily be accounted for if the cross-flow velocities are sufficiently
small by calculating the mean flow from the three-dimensioual boundary region equa-
tions of Davis and Rubin (1980), rather than from the usual two-dimensional.boundary
layer equations (Wundrow and Goldstein, 1994).

The initial unsteady motion should then have harmonic time dependence and be well
described by linear instability theory. As the instability waves propagate downstream,
they continue to grow, and if they get large enough, nonlinear effects will come into
play. This discussion is concerned with this first nonlinear stage of evolution, which
is usually characterized by the rapid growth of three-dimensional disturbances due to
resonant interactions between instability waves and between instability waves and
stream',vlse vortices.



Theinstability-wave growth rates should be small compared to the inverse boundary
layer thickness A-" in subsonic two-dlmensional, flat-plate boundary layers, but can be
of the same order as A-1 in two-dimensional supersonic boundary layers as well as in

boundary layers with sul_dently strong strcamwisc vortices at any Mach number.
However, the growth rates will frequently be small (relative to A-1) by the time
nonlinear effects set in, even in these more unstable flows. This can result from flow

divergence effects in two-dimensional mean flows because the local growth rate will
usually increase, reach a maximum, and then go to zero as the local Strouhall number
increases (as shown in figure 1), while the excitation is usually located in the vicinity
of the peak local growth rate in most experiments. The growth rate should therefore
decrease as the (constant frequency) instability waves propagate downstream into a

region where (in most eases) the boundary-layer thickness A will have increased. The
ultimate viscous decay of the streamwise vortex system will, of course, cause the

instability wave growth to approach zero in three-dimensional flows where the wave
growth is produced by a streamwise vortex field (Goldstein and Wundrow, 1995).

/

This suggests that the method of matched asymptotic expansions can be used to
describe these flows: with an "inner" nonlinear region, in which the instability-wave

growth rate is small, and a much larger "outer" region in which the unsteady flow is
governed by linear dynamics, but in which mean-flow divergence effects are important.
(Goldstein and Le_, 1988; Hultgren, 1992) Once the solutions in these two regions
have been found, a uniformly valid composite solution that applies everywhere in the
linear and nonlinear regions can be obtained in one of the usual ways--say, by

multiplying the linear and nonlinear solutions together and then dividing through by
their common part in the overlap domain (that always exists between the inner and

outer regions).



2. The Outer Linear Flow

We first consider the initial linear re#on just downstream of the excitation device
where the instability waves are still small enough so that no significant modal
interactions take place. At supersonic Mach numbers--below about 6 or so--where the
so-called, first-mode instability is dominant (Mack, 1984 and 1987), the most rapidly

growing modes on a two-dimeusional, flat-plate boundary layer are the oblique
instability waves, and the first modal interaction to take place is likely to be the self-
interaction between symmetric pairs of oblique instability waves (Leib and Lee, 1995).
In which case, it is appropriate to suppose that the unsteady motion is initiated from

a pair of oblique (equi-amplitude) instability wave modes with the same streamwise
wave number o r and scaled angular frequency _0t A/Urn -- _'rCrand equal and opposite
spanwise wave numbers (+/_). (U. is the characteristic velocity of the flow, and the
subscript r is used to denote the real part of the wave number o_and the phase speed
c, as well as all other quantities to which it is appended.) These two waves combine
to form a standing wave in the spanwise direction that propagates only in the direction
of flow--which is the situation that most frequently occurs in wave excitation

experiments that typically involve lon#sh excitation devices placed perpendicular to the
flow.

The two-dimensional mode usually exhibits the most rapid growth at subsonic speeds

provided, of course, that the mean flow is sufficiently two-dimensional. However, even
very weak spanwise periodic mean-flow distortions (i.e., streamwise vortices) can cause
the oblique modes to grow faster than the plane wave at the high Reynolds numbers
being considered herein. In fact, all instability waves will behave like oblique modes
when the streamwise vortices are sufficiently strong (Wundrow and Goldstein, 1994).
In which case, the first nonlinear interaction will again be a serf-interaction between

oblique modes, which is of the same type as in the previous case (Wundrow and

Goldstein, 1994).

But, even when no stream,vlse vortices are present (or when they are very weak) and
the mean flow is effectively two-dimensional, the oblique modes can eventually exhibit
the most rapid growth upon entering some intermediate (or parametric resonance)
stage. The oblique modes can then become large enough to interact with themselves
nonlinearly upon passing through this stage, and the resulting nonlinear interaction will
be the same as in the previous two cases.

The resonant interaction stage can be treated simultaneously with the serf-interaction

stage if the unsteady motion is initiated from a resonant triad of instability waves in
the initial linear region--a plane fundamental frequency wave, with scaled angular
frequency 2_t A/U,,, and a pair of oblique equl-amplitude subharmonlc waves, (again)
with the same streamwise wave number and angular frequency, % and %% ,

respectively, but equal and opposite spanwise wave numbers +/_.



In the present context, the importance of the 'resonance" condition is that it implies,
among other things, that the three waves all have the same phase speed cr. This

occurs (for the small growth rates and large Reynolds numbers that are of interest
here) when

P = (1)

which means that the oblique instability waves make a 60 ° angle with the direction of
flow. We can, of course, allow this angle to be arbitrary in flows where an oblique

mode can grow more rapidly than the plane wave and resonant interaction with the
latter is not required to enhance the growth rate of the former.

It is only possible to develop a systematic asymptotic theory of these phenomena when
the Reynolds number R is assumed to be large. Then, since we also require that the
instability-wave growth rates be small in the nonlinear region of the flow, the initial
modal and nonlinear interactions will be confined to a localized region centered around

the "critical level" (Lin, 1957) where the mean-flow velocity, say U c, is equal to the
common phase velocity cr of the two or three modes that interact there. (See
Figure 2.) This may explain why energy exchange between resonant modes (which
share a common critical layer) is much more efficient than between nonresonant

modes.

The flow outside the 'critical layer' is still governed by linear dynamics, which means

that it is given by a locally parallel mean flow plus an appropriate superposition of
linear instability waves. In the most general case, the mean flow will be a unidirection-
al transversely sheared flow, say U(y,z), which, as indicated in figure 3, means that its

velocity is in a single direction but can vary in magnitude in both transverse directions.
It is also appropriate to require that the mean flow be periodic in the spanwise
direction z in order to represent the streamwise vortices. Thus

U(y,z +2nn[[J o) = U(y,Z) for n = 1,2 .... (2)

where 2_t/_ 0 is the spanwise period of the flow. The unsteady pressure fluctuation, say
p, will then be determined by the generalized Rayleigh equation (Goldstein, 1976, pp.

6-10)



DIs I D_pl_2vuvap__0 (3)

where

_D. 0 ÷ u_0 (4)
Dt Or ax'

and CO isthe (assumed constant)sound speed for the flow. The strcamwisc,
transverse,and spanwisccoordinates, normalizedby theboundarylayerthlckncssA,

arex,y,and z,respccfvcly,and tdenotesthenormalizedtime.

The relevant solutions to Equation 0) are the so-called, normal-mode solutions which

are of the form (Henningson, 1987)

p = _e _''-_©(y,z) (6)

whereRe denotestherealpartandthenormalshape@ isdeterminedby thereduced

generalizedRayleighequation

i _ ]®--0, (7)
where

• i_ -,- £_.a (8)v, Oz

and the solution @is not necessarily periodic in the z-dlrection with the period 2x/fl 0

ofthemean flow.

The (external)pressurefluctuationp isthengiven(inthegeneralcase)by



where

P = eRe o , ÷ AO 0 , '

(9)

X = Z = o'fiz, (10)

a--o_+0 ], c:o *0 _,co=o_'+O 3, (11)

_._U)1]3 (12)
XO = a X,

and the scale factor a _< 1 has to be inserted in order to simultaneously cover the 0(1)

and long wavelength cases. The scaled spanwise wave number, streamwise wave

number and phase speed _ _, and c, respectively, are purely real.

The first term on the fight-hand side of Equation (9) represents the subharmonle

mode, while the second represents the fundamental mode. • and 00, are the linear

normal mode shapes which can be determined from Equation (7) in the general case

and for a two-dimensional mean flow are given by

,I, ; ¢(y)em z and " CdY) (13)
which shows that the fundamental mode is independent of Z, i.e., that it is a plane

wave and that the subharmonic mode is a supposition of oblique modes that combine

to form a standing wave in the spanwise direction.

A and A 0, which depend only on the streamwise coordinate (and then only through the
scaled streamwise variable x0, which varies on the length scale of the nonlinear region

which, not very surprisingly, turns out to be the reciprocal instability-wave growth rate)

determine the overall growth of the instability waves. They are completely determined

by the nonlinear dynamics within the critical layer and are, in practice, found by

equating the velocity jump across the critical layer, as calculated from the external

linear solution (i.e., the solution to Rayleigh's equation), to the velocity jumPl/Cal313culated
from the internal nonlinear solutionwithin the critical layer, e and e(e/a) / are the

amplitude scale factors for the oblique and plane waves, respectively, where e is always

much less than a.

Notice that the growth-rate and subharmonlc amplitude scali_s a(¢/a) 1/3 and e,

respectively, are related. This relation ensures that linear growth and nonlinear (or

modal interaction) effects will both impact the external linear solution at the same

asymptotic order. It is dictated by the requirement that the nonlinear stage correspond

-/



to the first stage of evolution beyond the initial linear region, i.e., that the nonlinear
solutions match onto the upstream linear solutions in the matched asymptotic sense.

The Benney-Bergeron (1969) parameter _ • lleo3R, where R is the Reynolds number
based on the boundary layer thickness A, is (in the present context) a measure of the

relative importance of viscous to growth-rate effects within the critical layer. The
wavelength scale factor o can be set to unity when the initial linear instability wave has
order-one wavelength.

3. Critical Layer Dynamics and the Amplitude Equations

The lowest order critical-layer equations turn out to be linear and (in the most general

case) correspond to a balance between growth (i.e., nonequilibrlum), mean-flow
convection, and viscous-diffusion effects. The nonlinear and modal interaction effects
are weak in the present description. Which means that they do not affect the lowest
order equations, but enter only through inhomogeneous terms in a higher order

problem. This ultimately implies that the scaled subharmonic amplitude function A
can be determined from a single amplitude equation or that the amplitude functions

A and A0 can be determined from a pair of amplitude equations--depending on
whether or not the parametric resonance interaction plays a role in the development.
In the former case, the relevant equation corresponding to the generalized scaling (10)

through (12) is #oven by Goldstein and Choi (1989), Wu, Lee, and Cowley (1993),
Goldstein and Wundrow (1995), Leib and Lee (1995), and Wundrow and Goldstein

(1994)as
i Xl

= ;A iT

and, in the latter case, are given by Goldstein and Lee (1992, 1993), Wu (1992),

Goldstein (1994), and Mallier and Maslowe (1994) as

i

=

+ i_.mK_Xl_X2_*(Xl + x2- x_L_dx 1 ,

(15)



_o6) _-_o(_) ÷
dx

ix1

x_xi

(16)

where the asterisks denote complex conjugates; _, ,i and tio are suitably renormal-

ized, and shifted variables corresponding to x0, A, and Ao, respectively, and _ and -/

are complex parameters which are dependent on the basic mean flow. The real part
of _ is the linear growth rate of the subharmonie mode. The real part of _0. is the
scaled linear growth rate of the fundamental mode. The imaginary part of _0, _0i,

represents the initial wave-number shift between the subharmouic and fundamental
modes.

Notice that these are integro-differential equations of the type first proposed for

Rossby waves on two-dimensional flows by Hickernell (1984), rather than the usual
ordinary differential equations of the dassical Stuart (1960)-Watson (1960)-Landau
(Landau and Lifshitz, 1987) theory. The integrals arise because the evolution or
growth effects have a dominant (i.e., first order) effect on the flow within the critical
layer, but only weakly affect the flow outside the critical layer. Therefore, the
nonlinear (or wave interaction) terms are influenced by the growth effects (which
produce the integrals) when these terms are generated within the critical layer (as they
are in the present approach). The integrals will not, of course, appear when the
nonlinear effects are generated outside the critical layer, as in the classical Stuart-
Watson-Landau theory.

The nonlinear kernel functions K, Ko, and K l through K4 turn out to be simple

polynomial functions of the streamwise (and corresponding integration) variables in the
inviscid limit X -* 0 and in the general case involve integrals of exponentials and

polynomials of the streamwise coordinates. K0 is a spedal ease of K corresponding to
the resonant condition (1) or its generalization for a spanwise variable mean flow.

To be consistent with our requirement that the solutions evolve from an initially linear

stage, the amplitude Equations (14) or (15) and (16) usually have to be solved subject

to the upstream boundary conditions

_, -. a(% ra, _ _,e r_ as i -, -_, (17)

that they match onto the linear, small growth-rate solution far upstream--but see
Goldstein (1995) and Wundrow, Huitgren, and Goldstein (1994) for an important
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exception to this. Notice that only the In'st term on each of_the right-hand sides of

Equations (15) and (16) contributes to these equations when A and A 0 are sufficiently

small--as they are initially--and that (17) is then an exact solution to the resulting

equations. We include the linear wave-number shift _0i to allow for an appropriate
amount of wave-number detuning in the analyses, which means that the resonance (1)

does not necessarily have to be exact and that the analysis actually appfies to a

relatively broad wave-number range about this resonance condition.

4. The Mean Flow Change

An important feature of the present high-Reynolds-number approach is that the
nonlinear critical-layer interaction produces a spanwlse-variable, mean-flow change

u= ,Uo_,Z,Xo), (18)

that is of the same order as the subharmonic instability wave (see Equation (9)) that

initially produces the interaction. However, the associated cross-flow velocities

turn out to be somewhat smaller than this. For a two-dimensional mean flow

In the remainder of the paper, we discuss the implications of the fundamental

Equations (14) to (16).

$. The Resonant Diad Interaction

We begin by considering the case where the interacting modes are all of the same

frequency. As already noted, this situation is relevant to two-dimensional supersonic

boundary layers and to flows at any Mach number when sufficiently strong streamwise

vortices are present.

The modal amplitude is now determined by Equation (14). Its kernel function K is

relatively complicated when viscous effects are retained, as in Wu, Lee, and Cowley

(1993), but in the inviscid limit originally considered by Goldstein and C-'hoi (1989),
Goldstein and Wundrow (1995), and Wundrow and Goldstein (1994), it is simply

where the constants k1, k2, k3 depend on the topology of the mean flow as well as on
the model structure of the upstream linear instability wave.



J

For a two-dimensional mean flow, k1, k2, k3 depend only on the obliqueness angle

0 .+ (22)
of the linear instability waves and are given by

1 tan20cO_20 a/td Jr.2 = _ = 1 tan20¢os20 (23)k, .+-

K will then vanish when 0 = Ir]4, and the inviscid solution to (14) will develop a

singularity at a finite downstream position (Goldstein and Choi, 1989), say _, at all

other angles. J therefore exhibits explosive growth as _--_,, and the local asymptotic

behavior is then given by (Goldstein and Choi, 1989, and Shukhman, 1991)

._ . a as _ ,'+_, (24)

+3+i,

where the real parameters a and _bare related to the original parameters _ and _,

through quadratures.

Figure 4 is a plot of the scaled amplitude function A versus the scaled streamwise
coordinate _, as calculated numerically from Equations (14), (21), and (23) for

= 1.2 and various values of O. The curves show that the solution initially exhibits

the linear growth and that the explosive growth occurs very suddenly once
nonlinearity comes into play. The dashed curves are the local asymptotic expansions
calculated from Equation (24). This latter result implies that the overall wave-
number/growth-rate scaling is preserved fight up to the singularity when a = 1, which
means that the overall asymptotic structure remains intact until the instability wave



amplitude becomes 0(1) everywhere in the flow, and that the motion is then governed
by the full nonlinear Euler equations in the next stage of evolution.

However, the growth-rate amplitude scaling is not preserved in the long wavelength
limit a -_ 0 (corresponding to, say, the weak streamwise vortex amplification mechanism
of Goldstein and Wundrow, 1995). In this case, the critical layer expands to fill the

inviscid wall layer that surrounds the critical layer, causing the flow to become fully
nonlinear while the instability amplitudes are still small. The next stage of evolution
is then characterized by a three-layer structure and is governed by the three-
dimensional, unsteady 'triple deck' equations, but without the viscous terms (Goldstein
and Lee, 1992). This does not, however, imply that the relevant scaling is the usual
triple-deck scaling in this stage.

Wu, Lee,and Cowley(1993)showedthatexplosivegrowthalsooccursinthegeneral
viscouscasefortwo-dimensionalmean flowsandthatthelocalasymptoticbehaviorin

thevicinityofthesingularityisstillgivenby (24).However,theyalsoshowedthat(as

inGoldstcinand Lcib,1989;and Leib,1991)thereisa certainrangeofparameters

where explosivegrowthdoesnotoccurwhen theviscousparameterA exceedsacertain

(usuallyverylarge)value.The instabilitywave willthenreacha peak amplitudeat
some fixedstreamwiselocationand subsequentlyundergoviscousdecaydownstream

ofthatpoint.

6. The Resonance and Triad Interaction

Now suppose that the scaled subharmonic amplitude A is very small and remains that
way during the entire resonant interaction. Notice that this includes the case

1

A = 0(e4o)3 where the subharmonic mode has the same amplitude scaling as the

fundamental (Goldstein and Lee, 1992).

The last term can be neglected on the right-hand side of Equation (15), which then
bcoDmes

i

dA= _+i I K1/'°(xt)A *(2xl - _)dxl' (25)

while the fundamental-mode amplitude Equation (16) reduces to the linear growth-rate

equation

_ (26)



which merely reflects the fact that there is no backreaction of the subharmonic mode

on the fundamental. It may seem rather surprising that this occurs even when the

subharmonic-mode amplitude is much larger than that of the fundamental, but the

critical-layer velocity jump that would produce baekreaction at this level turns out to

be identically zero in this case. It is worth noting that the backreaction term would

have to be quadratic in the subharmonic-mode amplitudes if this reaction occurred at

the equl-amplitude stage.

Since the second member of the subharmonic-mode Equation (25) is now linear in _,

we refer to it as the parametric resonance term. Its kernel function is given by

Goldstein and lee (1993)

when the mean flow is two-dimensional. Here _, is a suitably renormalized parameter

corresponding to the original viscous parameter ),.

Goldstein and Lee (1992) give an analytical solution to (25) through (27) for the

inviscid limit _ = 0, and Wundrow, Hultgren, and Goldstein (1994) extend it to the

viscous case where ,_ = 0(1). These solutions show that

,_, ~ % e (i/2)arg i_ e 1o,i/5 e as x _ co,

provided that the shifting of the coordinate _ is correct to 0(a) in the long wavelength

limit where a < < 1 and _ ,, (4/5)_. Here, x0 is a shifted coordinate corresponding

to x, co is a real constant, and A 0 is given by Equation (26).

Notice that K 1 (as given by Equation (27)) becomes highly concentrated around _ = x1

in the strongly viscous limit,

(29)
), -, % with _ ,, _1/3_, = 0(1).

Equation (25) therefore reduces to the ordinary differential equation

¢IA =t_+ 3i" *, (30)

where



= _-1/3_ _ = _-l/3_k ' and ,_ko(X) Ra_-2/3_0. (31)

The limit (29) corresponds to (among other things) the flat plate or Blasius boundary
layer, i.e., the flow in which the resonant-triad interaction was first analyzed by Craik

(1971). In fact, Equation (30) is within a constant factor of the equation obtained by
Craik (1971), who used conventional Stuart-Watson-Landau theory (Stuart, 1960;
Watson, 1960; and Landau and Lifshitz, 1987) together with finite Reynolds-number-
type arguments to derive his result. However, the corresponding limiting form of the
general fundamental-mode amplitude Equation (16) is still the linear Equation (26)
and not the nonlinear plane wave equation obtained by Craik (1971).

Equations (26), (30), and (31) imply that (Craik, 1971; and Wundrow, Hultgren, and

Goldstein, 1994)

_t + __3 eto,_ (32)
/k ___,0 e if/4 e 4"0'- as x -4. ¢o,

where C0 is a real constant: We have chosen the origin of the i coordinates so that

_t0 = etO, i (33)

and, for simplicity, we assume that _ is real.

Notice that Equation (32) does not reduce to the limiting form of Equation (28) as

Y,-, % which means that the limits _, -* -" and _ --"_, cannot be interchanged and,

consequently, that there must be some intermediate solution that connects the
asymptotic solutions (28) and (32). In fact, Wundrow, Hultgren, and Goldstein (1994)

show that the approximation (30) becomes invalid when ;_i = 0(_n_ 2/3) and that the

nonequilibrium effects become of the same order as the viscous effects for larger
values of _ at which point the flow begins to evolve on the faster scale

_= _1/3 [_- "_-1_ll_2/3]gOr (34)

and the oblique mode amplitude is then determined by the fully nonequilibrium

Equation (25), but with _t0(i ) treated as a slowly varying function of _ and the linear
growth term _A treated as a higher order effect (Goldstein, 1994).

This means that the critical-laver dyn_ics can eventually be controlled by non-
equilibrium (or _owth rate) effects, even in the Blasius boundary laver (where the
initial linear eriti¢ifl layer is of the viscous or equilibrium type_), and that the uniformly



vOid solution for the instability-wave e_aplitude will then be determined bv the

nonequilibrium Equation (25) and not by the viscous-limit Equation (30).

6. Concluding Remarks

In most boundary layer flows, it is the three-dimeusional instability waves that
ultimately exhibit the most rapid growth--either directly from the initial linear stage or
indirectly through an intermediate parametric resonance stage. The cubic self-
interaction between the three-dimensional instability waves of the same frequency is
one of the first strictly nonlinear interactions to come into play as the instability waves
evolve downstream in such flows. This interaction can have a dominant effect on the

subsequent instability-wave development--producing a local singularity (and con-
sequently explosive growth) at a finite downstream position in the inviscid limit and
sometimes producing viscous decay when viscosity is present (Goldstein, 1994; and Wu,
Lee, and Cowley, 1993).
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Figure 1.mTypical linear growth rate curve.
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Figure 4.--Scaled amplitude vs. the scaled streamwise
coordinate: (a) 6 = 15°; (b) 6 = 30°; (c) 0 = 60°; (d) 6 = 75 °.
Solid lines: numerical solutions; dashed lines: local

asymptotic solutions (from Wu, Lee, and Cowley (1993)).
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